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Abstract 
 
Surrogate models can perform a number of functions in support of a computational 
analysis.  Through interpolation and extrapolation, these models can be used to address 
complex problems involving experimental design, analysis and prediction.  Often, the 
objectives in a computational analysis involve the characterization of system performance 
based on some function of the response.  We refer to this function as the performance 
function g(r(x)) and consider applications where g is a scalar and r(x) is a q-dimensional 
computer response depending on the p-dimensional inputs x.  The inputs x may or my not 
be modeled probabilistically (with distribution F(x)).  The performance measure is 
computed as: 
 

( ) ( )( )xrr gpm =
 
 (simple performance prediction problem);  

 
( ) ( )( ) ( )∫= xx dFgpm rr  (average performance prediction problem);  

 
( ) ))((min xx rr gpm =  (worst-case performance prediction problem);  

 
( ) ( )( ){ }))((min: xr*xx* x ggpm == rr  (engineering design or optimization 

problem);   or 
 

( ) ( )( )( ) ( )∫= xx dFRgIpm *εrr   (reliability prediction problem) 

 
where, R* is some subset of the response space and I is an indicator function taking on 
the value 1 when the enclosed expression is true.  In general, we desire both a prediction 
for the performance measure and an estimate of prediction uncertainty. 
 
Most surrogate modeling approaches are based on some kind of smoothing.  Often, the 
surrogate models are not, themselves, members of the class of functions that are assumed 
to represent the actual computer response.  Consequently, their use for some of the 
performance measures above might not be appropriate.  Furthermore, the uncertainty 
associated with the surrogate model is typically specified in a point-wise fashion 



depending on x.  This has the consequence of restricting uncertainty estimates to fairly 
simple performance measures.  Together these drawbacks limit the utility of surrogate 
modeling in support of computational analysis. 
 
One alternative is to construct an approximation to a probability measure G(r) for the 
computer response based on the available data.  This approach will permit estimation in the 
general setting: 
 

  ( ) ( )( ) ( )rr GEIdE
r∫=|Prob   

 
where E(r) is an arbitrary event based on the computer response and d is the available data.  
Furthermore, one can use G(r) to calculate an induced distribution on the performance 
measure.  For prediction problems where the performance measure is a scalar, the 
performance measure distribution Fpm z( )  is determined by varying r according to G(r): 
 

 ( ) ( ) ( )∫ ≥=
rpm dGpmzIzF rr)( .   

       
For vector-valued or other, more involved, performance measures, alternative 
characterizations are possible.  
 
The “response-modeling” approach provides an approximate probability measure using a 
discrete ensemble of “realizations”.  A similar approach has been used in the geosciences 
to characterize two and three-dimensional regions based on limited spatial data (see 
Deutsch and Journel (1998), Chapter 5 and there references).  Here, we make a deliberate 
effort to construct realizations that “span” the response space in the same sense as a Latin 
hypercube sample (McKay, Beckman, and Conover (1979)) produces a stratified sample 
for a random variable or vector.  This is an alternative to relying on a random set of 
realizations as were used in the geoscience applications.  The realizations are generated 
using a series of assumptions concerning the form of the response and appropriate 
methods of construction.  Listed below is a brief summary of the process followed. 
 
A basic model of the form:  
 

( ) ( ) ( )xxx iii Pr ε+=    is assumed for the ith realization.      
 
Here, Pi(x) is a polynomial in x and ( )xiε  is a random function over x defined using a 
stationary spatial covariance function.  Steps (1) through (3) below describe construction 
of the polynomial component;  steps (4), (5) and (6) describe construction of the random 
function term;  step (7) completes the process. 
 

1) Evaluate main effects, quadratic terms, and interactions, where possible, using the 
initial data, settling on an appropriate polynomial model. 

2) Estimate the regression coefficients and their covariance structure. 



3) Generate k sets (one set for each realization) of these coefficients (assuming a 
multivariate normal for their joint distribution) using a Latin Hypercube design 
with the appropriate correlation structure imposed on the sets of coefficients using 
rank correlation procedures described in Iman and Conover (1982). 

4) The residuals to the fitted surface are transformed using the ‘Normal-scores 
transform’ as recommended in Deutsch and Journel (1998),  see Patel (1982), 
page 217. 

5) The transformed residuals are then used to estimate parameters of the exponential 
product spatial covariance function:  
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where  ⋅   is the Euclidian norm and p is the input dimension.  This covariance 
structure is fairly flexible and has been used with success in modeling 
computational data (see Sacks, Schiller, and Welch (1989)).  More flexible spatial 
covariance functions are available and might be recommended for problems 
where more data are available.  See Cressie (1991), Chapter 2 for a thorough 
discussion and for a more recent review, see O’Connell and Wolfinger (1997).  A 
maximum likelihood estimate is used in most of our applications for estimating 
φ . 

6) The sequential-Gaussian conditional simulation procedure, Deutsch and Journel 
(1998) is used to generate the random function component.  The algorithm 
generates a response surface over the grid in transformed space and then back-
transforms the values according to a set of tables constructed during the 
transformation.  The conditioning data are the transformed residuals to the 
polynomial surface.  These are recomputed for each polynomial in the ensemble.  

7) The back-transformed random function term is added to the polynomial to 
complete the realization. 

 
Using the response models to approximate the performance measure, we compute the 
probability for the arbitrary event E using:  
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where ri is the ith of k realizations.   
 
The primary use of response models in engineering applications thus far has been for 
computer experimental design.  The information contained in the response model 
concerning “likely” values at not-yet-evaluated input locations is used to predict the 
relative value of performing a simulation using those inputs.  Briefly, the following 
algorithm is pursued: 
 

1) A response-model approximation is made to a probability measure over the 
response space based on the initial data.  The distribution of the performance 
measure is then computed using this approximation. 



2)  Candidate designs are selected through a random search optimization algorithm or 
through a grid of single points (if the process is pursued sequentially) and step (3) is 
applied to each. 

3) Response values at the candidate design input locations are obtained (iteratively) 
according to the distribution in (1) above, and are combined with the initial data.  
The process in (1) is then repeated for each set of augmented data so constructed.  
The expected change in variability of the performance measure is calculated. 

4) The candidate design that indicates the largest expected decrease in performance 
measure variability is selected and the actual computational simulation experiments 
are performed. 

 
When the goal of the computer experiments is to reduce variability (uncertainty) in the 
performance measure distribution, the algorithm decomposes variability in the initial 
distribution into components representing the variability in the expected response and the 
expected variability remaining (see Parzen (1962)).  The best design is selected as the 
design that minimizes this later quantity.  Alternative optimization criteria are available for 
other problems like the engineering design problem where the solution is in terms of the 
input locations. 
 
This presentation includes several examples of the use of response-modeling for 
experimental design, analysis and prediction.  The examples illustrate the general 
applicability of this approach.  
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